Nonparametric Upper Confidence Bounds for Pr{Y < X} and Confidence Limits for Pr{Y<X} WhenXandYare Normal
نویسندگان
چکیده
منابع مشابه
Confidence Intervals for Nonparametric Regression
In non-parametric function estimation, providing a confidence interval with the right coverage is a challenging problem. This is especially the case when the underlying function has a wide range of unknown degrees of smoothness. Here we propose two methods of constructing an average coverage confidence interval built from block shrinkage estimation methods. One is based on the James-Stein shrin...
متن کاملNonparametric Confidence Sets for Density
We present a method for constructing nonparametric confidence sets for density functions based on an approach due to Beran and Dümbgen (1998). We expand the density in an appropriate basis and we estimate the basis coefficients by using linear shrinkage methods. We then find the limiting distribution of an asymptotic pivot based on the quadratic loss function. Inverting this pivot yields a conf...
متن کاملKullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملAdapting Improved Upper Confidence Bounds for Monte-Carlo Tree Search
The UCT algorithm, which combines the UCB algorithm and Monte-Carlo Tree Search (MCTS), is currently the most widely used variant of MCTS. Recently, a number of investigations into applying other bandit algorithms to MCTS have produced interesting results. In this research, we will investigate the possibility of combining the improved UCB algorithm, proposed by Auer et al. [2], with MCTS. Howev...
متن کاملOn Bayesian Upper Confidence Bounds for Bandit Problems
Stochastic bandit problems have been analyzed from two different perspectives: a frequentist view, where the parameter is a deterministic unknown quantity, and a Bayesian approach, where the parameter is drawn from a prior distribution. We show in this paper that methods derived from this second perspective prove optimal when evaluated using the frequentist cumulated regret as a measure of perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 1964
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.1964.10480739